The last twenty orders of (1, 2)-resolvable Steiner quadruple systems

نویسندگان

  • Zhaoping Meng
  • Beiliang Du
چکیده

A Steiner quadruple system (X, B) is said to be (1, 2)-resolvable if its blocks can be partitioned into r parts such that each point of X occurs in exactly two blocks in each part. The necessary condition for the existence of (1, 2)-resolvable Steiner quadruple systems RSQS(1, 2, v)s is v ≡ 2 or 10 (mod 12). Hartman and Phelps in [A. Hartman, K.T. Phelps, Steiner quadruple systems, in: J.H. Dinitz, D.R. Stinson (Eds.), Contemporary Design Theory, Wiley, New York, 1992, pp. 205–240] posed a question whether the necessary condition for the existence of (1, 2)-resolvable Steiner quadruple systems is sufficient. In this paper, we consider the last twenty orders of (1, 2)-resolvable Steiner quadruple systems and show that the necessary condition for the existence of (1, 2)-resolvable Steiner quadruple systems is also sufficient except for the order 10. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of resolvable Steiner quadruple systems

A Steiner quadruple system of order v is a set X of cardinality v, and a set Q, of 4-subsets of X, called blocks, with the property that every 3-subset of X is contained in a unique block. A Steiner quadruple system is resolvable if Q can be partitioned into parallel classes (partitions of X). A necessary condition for the existence of a resolvable Steiner quadruple system is that v = 4 or 8 (m...

متن کامل

On 2-ranks of Steiner triple systems

Our main result is an existence and uniqueness theorem for Steiner triple systems which associates to every such system a binary code | called the \carrier" | which depends only on the order of the system and its 2-rank. When the Steiner triple system is of 2-rank less than the number of points of the system, the carrier organizes all the information necessary to construct directly all systems ...

متن کامل

On the Preparata-like codes

A class of Preparata-like group codes is considered. It was suggested by Baker, van Lint and Wilson and re-stated in a different form by Ericson. We show that all such codes are inside the Hamming code providing its partition into the cosets of the Preparata-like codes. This partition induces 2-resolvable Steiner quadruple systems.

متن کامل

Constructions for Steiner quadruple systems with a spanning block design

A singular direct product construction is presented for Steiner quadruple systems with a spanning block design. More constructions are also provided using Steiner systems S(3; k; v) and other designs. Small orders for v = 40 and 52 are constructed directly. Some in1nite classes of orders are also obtained. c © 2002 Elsevier Science B.V. All rights reserved.

متن کامل

Embedding in a perfect code

For any 1-error-correcting binary code C of length m we will construct a 1-perfect binary code P (C) of length n = 2 − 1 such that fixing the last n − m coordinates by zeroes in P (C) gives C. In particular, any complete or partial Steiner triple system (or any other system that forms a 1-code) can always be embedded in a 1-perfect code of some length (compare with [13]). Since the weight-3 wor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 312  شماره 

صفحات  -

تاریخ انتشار 2012